高温蒸汽流量计在蒸汽计量中应用中存在的问题及解决方案
点击次数:1909 发布时间:2021-01-07 15:41:03
高温蒸汽流量计可用来测量液体、气体、过热蒸汽、饱和蒸汽,它独特的设计结构,使它可以测量高温蒸汽,智能型处理器能够实现数据更改,使用温度/压力的自动补偿及远程通讯等手段,使其测量的精度水平和便捷性得到很能大的提高,因为这些显著的优点,使高温蒸汽流量计目前在石油、化工、冶金、电力、水处理厂等行业得到广泛的应用。高温蒸汽流量计作为蒸汽结算中比较普遍的一种计量方式,其传感器按检测方式主要有热敏式、应力式、电容式等,其中电容式具有抗震性强的优点,但是价格较高,使用还不普遍,应力式具有价格低、量程较宽的优点,但也有一些比较致命的弱点,难以克服,凯铭仪表是专业的高温蒸汽流量计厂家,在长期的生产与安装实践中掌握了大量的经验与技巧,本文就是针对应力式高温蒸汽流量计使用中存在的问题,提出自己的看法,与大家共同学习。 通过高温蒸汽流量计使用中存在的问题,分析影响高温蒸汽流量计计量中几种影响因素,找出解决问题的办法和改进措施。
高温蒸汽流量计的测量包括三个重要参数:压力、温度、频率。通过三个参数的测量和蒸汽所处的状态计算出蒸汽的吨数,作为结算的依据。
如果蒸汽所处的状态为饱和蒸汽,只要测量压力或温度中的一项和测量的频率就能计算出蒸汽的用量,因为饱和蒸汽中压力与温度是一一对应的关系,对于过热蒸汽必须同时测量压力和温度的值,过热度的高低对蒸汽的计量影响比较大。
压力:因为对于一定的蒸汽量来说,蒸汽压力越高,对应的密度越大,因此蒸汽计量数越大,当压力1MPa时,其对应的饱和蒸汽的饱和温度为179度,密度5.05kg/cm3,如果测量的压力比实际的偏大,如实际测量的为1.11MPa,则密度为5.53 kg/cm3,对应的蒸汽量结算值就会偏大,偏差10%,对使用方来说,就要多付出不少的费用。因此,为防止此类问题的发生,建议在同一个测量点并联一个压力表,要求精度要高,经常进行比对,出现偏差时及时查找原因,找出解决办法。
温度:在过热蒸汽中,温度的精度显的十分重要。举例说明: 1.1 MPa的过热蒸汽,250度时对应的密度为4.75 kg/cm3,如果测量的温度测量的偏小,测量的为210度时对应的密度为5.24 kg/cm3,也就是交费时我们要向供汽方多交10%的费用。因此对于投入不大,而又可能产生较大计量误差的情况,像压力一样,同样安装一块比对式温度计,对及时发现问题具有较大的好处。
涡街参数设置:涡街式的蒸汽计量表,有根据参数自动计算蒸汽所处的状态,并进行结算,有的需要人工设定,由于所处的状态不同,对一个涡街表来说,计算的数据是有*大误差的。比如蒸汽参数为压力1.1 MPa,温度250度,显然为过热蒸汽,对应的密度为4.746,如果设定的是饱和蒸汽,而对应的饱和温度为183度,密度为6.131,按饱和蒸汽计量的数比过热蒸汽计量的数多出29%,这个数在用户看来可能觉得不可思议,但在实际情况中是存在的,在用户不了解的情况下,有的供热企业还在这样做,损害着消费者的利益。
在现在的计量中,特别是夏季用户减少的情况下,由于管道输送的距离较远,许多地方的蒸汽处于非饱和蒸汽状态,而现在的仪表没有对非饱和蒸汽的状态去区分,按照饱和蒸汽去结算,对用户来说也是不合理的,但现在还没有比较好的解决办法。
高温蒸汽流量计的选型与安装:
在一定的蒸汽参数下,高温蒸汽流量计每个口径有对应的计量*大流量和*小流量,超出范围就会造成*大的误差,仪表选的过大或过小都不合适,笔者对内部仪表的选项就做调查过,以前表的选型过大,小流量就不走表,后来表选项小了,但又出现一个问题,用户利用表的特性,有意加大用汽量,发现超过一定的流量后,汽表反而显示流量值反而原来越小了,造成的损失更大,出现这种情况,就要在表前的阀门位置上安装节流装置,限制*大流量来解决。因此,必须坚持安装表厂提供的仪表上下限去进行表的选型。
安装要求:规范对高温蒸汽流量计的安装要求比较多,除了对高温蒸汽流量计的前后直管段的要求如图,
还有防电磁干扰问题和震动问题,本人在使用中发现几个问题,在此提醒安装者注意,一是涡街传感器安装时一定要安装在管段的中心,法兰使用厂家配制的专用法兰,内径保持同心,同一厂家不同批次的法兰也要注意,也可能有误差,改造时常遇到这种情况,使用时要仔细测量,如果不同心,很容易造成测量流量偏大问题。另外,在供暖系统,循环水泵通过换热器与高温蒸汽流量计计量系统相连,水泵安装不同心,减震差,都可能造成对汽表的干扰。在使用中,我们经常发现这样的问题,没有用汽的地方,汽表照样走,这时*先要检查表后控制的阀门是否能关严,如果能关严,如果关严后汽表仍然走表,有可能表后输送汽的管道过长,蒸汽在震荡中造成的跑表现象,这时要想表不走,只有把表前的阀门关严,长期不用时把表后的汽放干净才能解决。实际使用中高温蒸汽硬密封球阀的密封性能比较可靠,在蒸汽系统中应优先使用。
为解决表自跑现象,为避免外来的震动干扰,除了加固定支架为,在震动来源侧可以加软接头来消除干扰,也可以收到很好的效果。
为比较准确的计量,在蒸汽结算中,因推广使用热量计量代替吨数计量,减少不公平问题
另外,使用到一定的年限后由于磨损量增大,涡街传感器也要进行更换,否则计量也会出现不准现象的发生。
通过以上分析,应力式高温蒸汽流量计的缺点较多,厂家因根据使用中存在的问题进行改进,向使用水电表一样取得比较合理精确的计量效果,减少争议。
高温蒸汽流量计的测量包括三个重要参数:压力、温度、频率。通过三个参数的测量和蒸汽所处的状态计算出蒸汽的吨数,作为结算的依据。
如果蒸汽所处的状态为饱和蒸汽,只要测量压力或温度中的一项和测量的频率就能计算出蒸汽的用量,因为饱和蒸汽中压力与温度是一一对应的关系,对于过热蒸汽必须同时测量压力和温度的值,过热度的高低对蒸汽的计量影响比较大。
压力:因为对于一定的蒸汽量来说,蒸汽压力越高,对应的密度越大,因此蒸汽计量数越大,当压力1MPa时,其对应的饱和蒸汽的饱和温度为179度,密度5.05kg/cm3,如果测量的压力比实际的偏大,如实际测量的为1.11MPa,则密度为5.53 kg/cm3,对应的蒸汽量结算值就会偏大,偏差10%,对使用方来说,就要多付出不少的费用。因此,为防止此类问题的发生,建议在同一个测量点并联一个压力表,要求精度要高,经常进行比对,出现偏差时及时查找原因,找出解决办法。
温度:在过热蒸汽中,温度的精度显的十分重要。举例说明: 1.1 MPa的过热蒸汽,250度时对应的密度为4.75 kg/cm3,如果测量的温度测量的偏小,测量的为210度时对应的密度为5.24 kg/cm3,也就是交费时我们要向供汽方多交10%的费用。因此对于投入不大,而又可能产生较大计量误差的情况,像压力一样,同样安装一块比对式温度计,对及时发现问题具有较大的好处。
涡街参数设置:涡街式的蒸汽计量表,有根据参数自动计算蒸汽所处的状态,并进行结算,有的需要人工设定,由于所处的状态不同,对一个涡街表来说,计算的数据是有*大误差的。比如蒸汽参数为压力1.1 MPa,温度250度,显然为过热蒸汽,对应的密度为4.746,如果设定的是饱和蒸汽,而对应的饱和温度为183度,密度为6.131,按饱和蒸汽计量的数比过热蒸汽计量的数多出29%,这个数在用户看来可能觉得不可思议,但在实际情况中是存在的,在用户不了解的情况下,有的供热企业还在这样做,损害着消费者的利益。
在现在的计量中,特别是夏季用户减少的情况下,由于管道输送的距离较远,许多地方的蒸汽处于非饱和蒸汽状态,而现在的仪表没有对非饱和蒸汽的状态去区分,按照饱和蒸汽去结算,对用户来说也是不合理的,但现在还没有比较好的解决办法。
高温蒸汽流量计的选型与安装:
在一定的蒸汽参数下,高温蒸汽流量计每个口径有对应的计量*大流量和*小流量,超出范围就会造成*大的误差,仪表选的过大或过小都不合适,笔者对内部仪表的选项就做调查过,以前表的选型过大,小流量就不走表,后来表选项小了,但又出现一个问题,用户利用表的特性,有意加大用汽量,发现超过一定的流量后,汽表反而显示流量值反而原来越小了,造成的损失更大,出现这种情况,就要在表前的阀门位置上安装节流装置,限制*大流量来解决。因此,必须坚持安装表厂提供的仪表上下限去进行表的选型。
安装要求:规范对高温蒸汽流量计的安装要求比较多,除了对高温蒸汽流量计的前后直管段的要求如图,
还有防电磁干扰问题和震动问题,本人在使用中发现几个问题,在此提醒安装者注意,一是涡街传感器安装时一定要安装在管段的中心,法兰使用厂家配制的专用法兰,内径保持同心,同一厂家不同批次的法兰也要注意,也可能有误差,改造时常遇到这种情况,使用时要仔细测量,如果不同心,很容易造成测量流量偏大问题。另外,在供暖系统,循环水泵通过换热器与高温蒸汽流量计计量系统相连,水泵安装不同心,减震差,都可能造成对汽表的干扰。在使用中,我们经常发现这样的问题,没有用汽的地方,汽表照样走,这时*先要检查表后控制的阀门是否能关严,如果能关严,如果关严后汽表仍然走表,有可能表后输送汽的管道过长,蒸汽在震荡中造成的跑表现象,这时要想表不走,只有把表前的阀门关严,长期不用时把表后的汽放干净才能解决。实际使用中高温蒸汽硬密封球阀的密封性能比较可靠,在蒸汽系统中应优先使用。
为解决表自跑现象,为避免外来的震动干扰,除了加固定支架为,在震动来源侧可以加软接头来消除干扰,也可以收到很好的效果。
为比较准确的计量,在蒸汽结算中,因推广使用热量计量代替吨数计量,减少不公平问题
另外,使用到一定的年限后由于磨损量增大,涡街传感器也要进行更换,否则计量也会出现不准现象的发生。
通过以上分析,应力式高温蒸汽流量计的缺点较多,厂家因根据使用中存在的问题进行改进,向使用水电表一样取得比较合理精确的计量效果,减少争议。