蒸汽流量计量中关于空气流量计的特性分析研究
点击次数:2129 发布时间:2021-01-08 05:35:49
空气流量计在测量液体和气体方面都有很好的应用,针对于空气流量计在蒸汽流体上的测量,近年来得到了很广泛的推广,许多仪表生产企业也在积*地攻关与研发。对于蒸汽了测量一直是比较棘手的,为了强化对于蒸汽的计量能力,在20世纪60年代,日本横河电机株式会社与美国Eastech公司合作,共同研发了一种空气流量计,它的耐高温性能好,压损不大,这种流量计广泛应用于高温条件下蒸汽流量的计量过程。因为流体流量和其输出的频率信号存在正相关性,同时频率信号在流体组分、密度、压力、温度改变情况下仍能保持一定稳定性;另外,此仪器的量程较大;均为不可动部件,稳定性大大增强;结构相对简单,安装维护难度小,维护成本低。基于以上优点,该频率信号被普遍使用在计量与工业过程的控制过程中。
到了二十世纪80年代,因为工业生产的推动,空气流量计得以广泛采用,但缺点是对于蒸汽介质上的测试仍是空白,只可进行空气流量计的构造方式、DSP、流量量程、管道材质等方面加以升级,增强了空气流量计的在液体与空气中的测量准度。由于在蒸汽介质方面的探索上存在盲区,在流量精度测量上长期以来备受业内人士的质疑。空气流量计虽然技术上有了改进,但有待进一步改良,不管是在理论还是应用层面上均有诸多工作要做。近些年,**范围内的业内人士对于空气流量计实施了多次探索,研究成果值得肯定。
蒸汽流量量值体系的溯源是保证蒸汽流量测量准确的关键。本文基于流体力学、热力学以及空气流量计旋涡的产生机理,分析不同介质对空气流量计的计量特性的影响,介质粘度的不同导致了三种介质测试下雷诺数的不同,影响到斯特劳哈数差异。但对空气流量计的仪表系数影响不大,可忽略其影响。介质粘度的不同会导致流量范围的不同。该分析将有利于提高空气流量计测量蒸汽流量的计量准确度。
1 蒸汽介质的影响因素
所谓空气流量计(亦称旋涡流量计),其工作机理是“卡门涡街”,是一类流体振荡式的测量仪器。“卡门涡街”的原理是:待测管道流体中放进一根(或数根)非流线型截面的旋涡发生体,等到雷诺数到达特定数值,在旋涡发生体两侧分离出两串交错有序的旋涡,此过程具有交替性,我们将这种旋涡叫作卡门涡街。在特定雷诺数范围之间,旋涡的分离频率同旋涡发生体与管道的几何尺寸息息相关。数据表明,旋涡的分离频率同流量存在正相关性,此频率可通过传感器获得。以上空气流量计与卡门涡街的关系可从图1看出,二者有如下逻辑关系:
式中:
f 为旋涡分离频率,Hz ;
S r 为斯特劳哈尔数;
U 1 为旋涡发生体两侧的平均流速,m/s ;
d 为旋涡发生体迎流面的宽度,m;
U 为被测介质来流的平均流速,m/s ;
m 为旋涡发生体两侧弓形面积与管道横截面面积之比。不可压缩流体中,由于流体密度 r 不变,由连续性方程可得到: m = U / U 1 。
式中:K 为空气流量计的仪表系数,1 /m 3 。通过式(3)不难看出,仪表系数 K 是空气流量计的计量特性的定量表征,数据表明,其仪表系数只和其机械结构与斯特劳哈尔数有关,同来流流量并无相关性。
研究发现,蒸汽对空气流量计计量特性存在较大影响。可总结为三个方面:
*一,从公式(3)中能够得出,机械结构尺寸 D 、m 、 d 以及斯特劳哈尔数 S r 这些参数与K值大小存在较大关联性。基于物理原理研究发现,在流体介质条件存在差异情况下,机械结构尺寸的改变一般是与温度的改变引发的热胀冷缩效应息息相关。
*二,雷诺数对斯特劳哈尔数 S r 产生较大影响,前者又与粘度密切相关,而粘度的差异性又取决于流体的差异,既而引发斯特劳哈尔数 S r 的区别。
*三,公式(3)的推导过程是以不可压缩流体为前提的,当换作气体介质时,由于可压缩性的区别或许会引发仪表系数产生误差。以上三个因素对于空气流量计的影响将在下一节进一步探讨。
2 蒸汽介质斯特劳哈尔数的影响
严格而言,斯特劳哈尔数是一种相似准则,是在讨论流体力学中物理相似和模化是引入的概念。其是用来表征旋涡频率和阻流体特征尺寸、流速关系的。在特定雷诺数区间中,旋涡的分离频率和旋涡发生体与管道的几何尺寸密切相关,换言之斯特劳哈数可视为定量。
由图2可看出,在 R eD =2×10 4 7×10 6 区间内,斯特劳哈数是定值,此也是仪表的正常工作区间。
现实情形下, S r 即便在 R eD =2×10 4 7×10 6 区间内,也与 R eD 的改变发生变化,参照1989年日本制订的空气流量计工业标准JISZ8766《空气流量计——流量测量方法》。2002年加以修订,把空气流量计发生体的固定形式归为两种,《标准》规定的旋涡设计,发生体依据插入测量管顶端固定与否区别为标准1型与标准2型,它们的 S r 值存在较小区别,详见表1数据。
标准2型 S r 的平均值是0.25033,它的标准偏差是0.12%;而标准1型为0.3%,现阶段我国一般广泛采用标准1型。而标准2型在日本横河仪表研制的空气流量计普遍采用。
通过雷诺数的推导公式不难得出,检测时,蒸汽和空气因为粘度的区别,会引发雷诺数存在差异。参照一般实验情况下三类流体介质的工况差异,它们的运动粘度详见表2:
式中:
表征介质密度;
D 表征管径;
u 表征流速;
表征介质动力粘度;
v 表征介质运动粘度。
通过以上各参数数据不难发现,水的运动粘度*低,空气*高,蒸汽介于二者之间。三者比例是1:15:4。所以若使雷诺数一致,应使水的流速*小,空气*大,蒸汽在区间取值。在对仪表的系数进行检定过程中,通常应考虑雷诺数一致时,真实测量过程中的差异性误差。尤其在蒸汽的测量时,仪表量程的选型是参照在空气介质下测量获得的体积流量区间与蒸汽的密度乘积,推导出蒸汽的体积流量区间。这种算法会引发差异性介质下雷诺数的区间差异。细致分析上表可得出,只要雷诺数在既定范围内,检定过程中并不会由于介质的不同造成较大的误差,这个影响可不考虑。但雷诺数不可超出规定区间,否则会引发 S r 的较大差异,造成误差。
通过表3不难发现,要得出空气流量计基于*低流量的限雷诺数,口径一致情况下三类介质的*小流速应满足1.0:4.0:15.0的大致比例。所以不可以将空气介质下的体积流量区间等同于蒸汽介质下的数值。
3 蒸汽介质物理特性影响分析
1873年,荷兰**物理学家范德瓦尔斯特实验室中,发现了水蒸气的物理性质,得出气体分子间有着一定作用力,继而推导出气体的状态方程以辅助理论验证,这就是**的范德瓦尔斯特气体状态方程。进一步研究发现,水蒸汽的分子的体积和相互的作用力比较大,无法以理想的气体状态方程加以表征。参照范德瓦尔斯特公式(5)的计算过程:
式中:
p 为压强;
V 为1摩尔气体的体积;
R 为普适气体常数;
a 为度量分子间引力的参数;
b 为1摩尔分子本身包含的体积之和。
以上公式(5)中因子 a 和 b 的值因气体的性质不同而存在差异,一般地,气体的分子间引力参数 a 与 b 分子体积 表述如表3所示。
范德瓦尔斯特提出,气体分子间的吸引力与间距存在负相关性,也就是密度的概念。把此理论使用在空气流量计的测量过程中,通过表中的数据不难发现,水蒸汽分子间的吸引力a的数值较大,相当于氧气与氮气的4倍多。所以,在测量实际气体时,基于同等压力条件,水的分子间的吸引力的数值较蒸汽与空气大得多,而蒸汽又显著大于空气。用空气流量计进行测量时,发生体两侧的位置因为流速加大,引起静压力减小,体积扩张,流体密度随之减小,而水介质由于分子间作用力大,并无明显膨胀情况。蒸汽的分子间的吸引力比空气大,所以前者膨胀性更低,密度变化也更小。参考流量的连续性方程得出,因为空气密度变化更大,所以它的发生体两侧的流量变化较蒸汽介质更大,所以它的仪表系数比蒸汽介质变化更显著。而气体的可压缩性与等嫡指数是其内在机理,这和我们的理论研究结果相互印证。
蒸汽流量计量中关于空气流量计的特性分析研究
空气流量计取压方式对检定结果的影响及优化措施
空气流量计作为主蒸汽流量计在应用时的故障处理分析
有效增加空气流量计价格使用寿命的日常维护操作方法说明
管道空气流量计在气田生产中使用情况与计量问题分析
浅析空气流量计在钻井检测系统方面的应用
空气流量计进出口管线泄漏原因分析及处理
食品厂压缩空气流量计,高温压缩空气流量计
压缩空气流量计在工程应用中要应对一系列问题及解决方法
压缩空气流量计厂家
管道压缩空气流量计
远传压缩空气流量计
智能压缩空气计量表,压缩空气流量计量表
食品厂压缩空气流量计
管道压缩空气流量计,压缩空气流量用什么流量计测量
智能压缩空气流量计选型
压缩空气流量计dn100
智能压缩空气计量表,管道式压缩空气流量计
dn25压缩空气流量计
测量压缩空气流量计,管道式压缩空气流量计
智能压缩空气计量表,测量压缩空气流量计
工厂压缩空气流量计
dn40压缩空气流量计,压缩空气流量计量表
对夹式压缩空气流量计
1寸压缩空气流量计
大管径压缩空气流量计,智能压缩空气计量表
测压缩空气流量计
导致压缩空气流量计测量数据偏差的因素分析
智能压缩空气流量计价格
管道压缩空气流量计厂家
到了二十世纪80年代,因为工业生产的推动,空气流量计得以广泛采用,但缺点是对于蒸汽介质上的测试仍是空白,只可进行空气流量计的构造方式、DSP、流量量程、管道材质等方面加以升级,增强了空气流量计的在液体与空气中的测量准度。由于在蒸汽介质方面的探索上存在盲区,在流量精度测量上长期以来备受业内人士的质疑。空气流量计虽然技术上有了改进,但有待进一步改良,不管是在理论还是应用层面上均有诸多工作要做。近些年,**范围内的业内人士对于空气流量计实施了多次探索,研究成果值得肯定。
蒸汽流量量值体系的溯源是保证蒸汽流量测量准确的关键。本文基于流体力学、热力学以及空气流量计旋涡的产生机理,分析不同介质对空气流量计的计量特性的影响,介质粘度的不同导致了三种介质测试下雷诺数的不同,影响到斯特劳哈数差异。但对空气流量计的仪表系数影响不大,可忽略其影响。介质粘度的不同会导致流量范围的不同。该分析将有利于提高空气流量计测量蒸汽流量的计量准确度。
1 蒸汽介质的影响因素
所谓空气流量计(亦称旋涡流量计),其工作机理是“卡门涡街”,是一类流体振荡式的测量仪器。“卡门涡街”的原理是:待测管道流体中放进一根(或数根)非流线型截面的旋涡发生体,等到雷诺数到达特定数值,在旋涡发生体两侧分离出两串交错有序的旋涡,此过程具有交替性,我们将这种旋涡叫作卡门涡街。在特定雷诺数范围之间,旋涡的分离频率同旋涡发生体与管道的几何尺寸息息相关。数据表明,旋涡的分离频率同流量存在正相关性,此频率可通过传感器获得。以上空气流量计与卡门涡街的关系可从图1看出,二者有如下逻辑关系:
式中:
f 为旋涡分离频率,Hz ;
S r 为斯特劳哈尔数;
U 1 为旋涡发生体两侧的平均流速,m/s ;
d 为旋涡发生体迎流面的宽度,m;
U 为被测介质来流的平均流速,m/s ;
m 为旋涡发生体两侧弓形面积与管道横截面面积之比。不可压缩流体中,由于流体密度 r 不变,由连续性方程可得到: m = U / U 1 。
式中:K 为空气流量计的仪表系数,1 /m 3 。通过式(3)不难看出,仪表系数 K 是空气流量计的计量特性的定量表征,数据表明,其仪表系数只和其机械结构与斯特劳哈尔数有关,同来流流量并无相关性。
研究发现,蒸汽对空气流量计计量特性存在较大影响。可总结为三个方面:
*一,从公式(3)中能够得出,机械结构尺寸 D 、m 、 d 以及斯特劳哈尔数 S r 这些参数与K值大小存在较大关联性。基于物理原理研究发现,在流体介质条件存在差异情况下,机械结构尺寸的改变一般是与温度的改变引发的热胀冷缩效应息息相关。
*二,雷诺数对斯特劳哈尔数 S r 产生较大影响,前者又与粘度密切相关,而粘度的差异性又取决于流体的差异,既而引发斯特劳哈尔数 S r 的区别。
*三,公式(3)的推导过程是以不可压缩流体为前提的,当换作气体介质时,由于可压缩性的区别或许会引发仪表系数产生误差。以上三个因素对于空气流量计的影响将在下一节进一步探讨。
2 蒸汽介质斯特劳哈尔数的影响
严格而言,斯特劳哈尔数是一种相似准则,是在讨论流体力学中物理相似和模化是引入的概念。其是用来表征旋涡频率和阻流体特征尺寸、流速关系的。在特定雷诺数区间中,旋涡的分离频率和旋涡发生体与管道的几何尺寸密切相关,换言之斯特劳哈数可视为定量。
由图2可看出,在 R eD =2×10 4 7×10 6 区间内,斯特劳哈数是定值,此也是仪表的正常工作区间。
现实情形下, S r 即便在 R eD =2×10 4 7×10 6 区间内,也与 R eD 的改变发生变化,参照1989年日本制订的空气流量计工业标准JISZ8766《空气流量计——流量测量方法》。2002年加以修订,把空气流量计发生体的固定形式归为两种,《标准》规定的旋涡设计,发生体依据插入测量管顶端固定与否区别为标准1型与标准2型,它们的 S r 值存在较小区别,详见表1数据。
标准2型 S r 的平均值是0.25033,它的标准偏差是0.12%;而标准1型为0.3%,现阶段我国一般广泛采用标准1型。而标准2型在日本横河仪表研制的空气流量计普遍采用。
通过雷诺数的推导公式不难得出,检测时,蒸汽和空气因为粘度的区别,会引发雷诺数存在差异。参照一般实验情况下三类流体介质的工况差异,它们的运动粘度详见表2:
式中:
表征介质密度;
D 表征管径;
u 表征流速;
表征介质动力粘度;
v 表征介质运动粘度。
通过以上各参数数据不难发现,水的运动粘度*低,空气*高,蒸汽介于二者之间。三者比例是1:15:4。所以若使雷诺数一致,应使水的流速*小,空气*大,蒸汽在区间取值。在对仪表的系数进行检定过程中,通常应考虑雷诺数一致时,真实测量过程中的差异性误差。尤其在蒸汽的测量时,仪表量程的选型是参照在空气介质下测量获得的体积流量区间与蒸汽的密度乘积,推导出蒸汽的体积流量区间。这种算法会引发差异性介质下雷诺数的区间差异。细致分析上表可得出,只要雷诺数在既定范围内,检定过程中并不会由于介质的不同造成较大的误差,这个影响可不考虑。但雷诺数不可超出规定区间,否则会引发 S r 的较大差异,造成误差。
通过表3不难发现,要得出空气流量计基于*低流量的限雷诺数,口径一致情况下三类介质的*小流速应满足1.0:4.0:15.0的大致比例。所以不可以将空气介质下的体积流量区间等同于蒸汽介质下的数值。
3 蒸汽介质物理特性影响分析
1873年,荷兰**物理学家范德瓦尔斯特实验室中,发现了水蒸气的物理性质,得出气体分子间有着一定作用力,继而推导出气体的状态方程以辅助理论验证,这就是**的范德瓦尔斯特气体状态方程。进一步研究发现,水蒸汽的分子的体积和相互的作用力比较大,无法以理想的气体状态方程加以表征。参照范德瓦尔斯特公式(5)的计算过程:
式中:
p 为压强;
V 为1摩尔气体的体积;
R 为普适气体常数;
a 为度量分子间引力的参数;
b 为1摩尔分子本身包含的体积之和。
以上公式(5)中因子 a 和 b 的值因气体的性质不同而存在差异,一般地,气体的分子间引力参数 a 与 b 分子体积 表述如表3所示。
范德瓦尔斯特提出,气体分子间的吸引力与间距存在负相关性,也就是密度的概念。把此理论使用在空气流量计的测量过程中,通过表中的数据不难发现,水蒸汽分子间的吸引力a的数值较大,相当于氧气与氮气的4倍多。所以,在测量实际气体时,基于同等压力条件,水的分子间的吸引力的数值较蒸汽与空气大得多,而蒸汽又显著大于空气。用空气流量计进行测量时,发生体两侧的位置因为流速加大,引起静压力减小,体积扩张,流体密度随之减小,而水介质由于分子间作用力大,并无明显膨胀情况。蒸汽的分子间的吸引力比空气大,所以前者膨胀性更低,密度变化也更小。参考流量的连续性方程得出,因为空气密度变化更大,所以它的发生体两侧的流量变化较蒸汽介质更大,所以它的仪表系数比蒸汽介质变化更显著。而气体的可压缩性与等嫡指数是其内在机理,这和我们的理论研究结果相互印证。
下一篇:空气流量计价格