如何有效提高污水管道流量计使用电磁兼容性的研究分析
点击次数:2121 发布时间:2020-12-24 07:38:13
污水管道流量计面世至今,其技术已经成熟,在工业生产现场的许多地方都有着广泛的应用,由于污水管道流量计的测量过程不受被测介质温度、黏度、密度等因素影响, 具有测量速度快、精度高、测量口径宽、输出线性度好, 与被测介质不接触, 耐腐蚀、抗磨损, 流体压力损失小等优点, 因而广泛应用于造纸厂纸浆、助剂、水等流体的测量。不过, 污水管道流量计也有其不足, 传感器的输出感应电动势很小, 容易受到外界电磁干扰, 而现场情况又都是千差万别,无法做到每个测量环境都能够达到标准要求,因此如何提高污水管道流量计的电磁兼容性, 使其能在恶劣的电磁环境正常使用是污水管道流量计设计必须考虑的问题。文中以横河公司的ADMAGAE系列污水管道流量计为例, 结合笔者的工程实践, 介绍有关污水管道流量计的使用并分析其电磁兼容性(EMC)。介绍利用面板及智能终端进行污水管道流量计参数设置和组态的方法, 以及提高污水管道流量计的电磁兼容性技术。污水管道流量计的干扰源主要包括工频电磁干扰、流体电化学干扰噪声和电源干扰噪声。目前污水管道流量计主要采用低频或双频矩形波励磁技术、同步采样技术、输入保护、接地技术等来降低干扰。实际应用表明, 这些技术有较好的抗干扰效果。
1、污水管道流量计的工作原理
污水管道流量计的工作以电磁感应定律为基础, 即当一个导体在电磁场中运动, 并且运动方向垂直于电磁场时就会产生感应电动势, 所产生的感应电动势的方向垂直于导体运动和电磁场运动的方向, 感应电动势的大小与导体的运动速度和磁场的磁感应强度成正比。当导电流体以平均流速V(m/s)通过一根内径为D(m)的管子时, 若管子内存在一个磁感应强度为B(T)的磁场, 那么就可产生一个垂直于磁场方向和流体流动方向的电动势E:
E = DVB (V) (1)
容积流量Q为:
Q =πD2 V/4 (m3 / s) (2)
将式(2)代入式(1)并处理得:
E=(4B/πD)×Q (V) (3)
如果B和D是常数, 那么从式(3)可看出, E与
Q成正比。电磁流量转换器把电动势E放大并转换成标准的4 ~ 20 mA的信号或脉冲信号, 作为对应的流量信号输出。
2、污水管道流量计的参数设置方法及组态
流量计的参数设置(组态)有两种方法, 一是利用显示面板上的按键, 二是利用手持智能终端。
2.1 使用面板进行参数设定ADMAGAE系列污水管道流量计面板上常用的符号有:
(1)RED(红) 正常工作时不亮, 有报警时闪烁;
(2)定义符 定义符用冒号“:” , 表示所显示的数据正处于待设定状态;
(3)单位显示 显示流量单位;
(4)显示数据 显示流量数据、设定数据和报警的种类;
(5)小数点 表示数据中的小数点;
(6)设定键 这些键用来改变数据显示和设定数据的类型。数据显示类型共有3 种:流量数据显示模式、设定模式、报警显示模式。
2.1.1 流量数据显示模式
流量数据显示模式表示的是瞬时流量值和累积流量值, ADMAGAE可显示12种类型的流量数据。进入流量显示模式用“d1”参数来改变显示项, 详细设定可参考流量计用户手册。
2.1.2 设定模式
设定模式用来检查参数内容和重写数据。只要按下“SET”键, 可将该模式从正常的操作模式中调出。
2.1.3 报警显示模式
当报警发生时, 报警模式就会取代当前模式来显示发生报警的类型, 但是这种情况只是发生在当前流量显示模式或设定模式中参数号被改变时(当正在该部数据项时, 不显示报警)。
2.2 BT智能终端设定
具有智能通信功能的仪表可与智能终端通信。横河的智能终端有BT100、BT200 等型号, 简称BT智能终端, 它们采用BRAIN协议, 将1个±2 mA、2.4 kHz的调制信号迭加到4 ~ 20 mA的模拟信号上用作信号传输。由于调制信号是交流信号, 所以迭加不会影响模拟信号的数值。
BT智能终端与流量计的连接有两种方式:一是直接与流量计端盖下面的BT端子相连, 这种方式适用于现场调试或流量计不具备智能通信功能的情况;二是与4 ~ 20 mA直流信号线连接, BT智能终端可以连接在从控制柜到流量计信号线的任何位置,*大距离可达2 km, 只要保证整个回路的负载电阻在250 ~ 750 Ψ之间, 就可以可靠地通信。这种方式操作者不必去现场, 在控制室就可对流量计进行设置和在线监测, 是使用*多的一种方式。BT智能终端采用菜单式操作, 可以**显示和修改污水管道流量计的各种参数, 其基本的操作有流量计自检、量程调整、显示方式设置、报警设置等。
2.3 污水管道流量计数据设定与组态
污水管道流量计是根据与流体流速相对应的微小电动势计算出体积流量并输出4 ~ 20 mA的信号。为保证获得正确的信号, 必须设定通径、流量量程和仪表系数3个参数, 这3个参数中, 通径和仪表系数早在仪表出厂前就设定好的, 因此用户不能设定这两个参数。用户也可以在仪表出厂前将流量量程设定好, 这种设定只有在用户要求改变量程时才可进行重新设定。
3、电磁兼容性分析
污水管道流量计的工作以电磁感应定律为基础, 产生的正比于被测流量的感应电动势通常很小, *易受到外界电磁干扰, 而它本身产生的电磁干扰很小,因此污水管道流量计的电磁兼容性主要体现在它如何在恶劣的电磁环境下正常工作。在恶劣的电磁环境下, 电磁耦合静电感应是污水管道流量计干扰噪声的主要来源;被测流体介质特性产生的电化学干扰噪声是污水管道流量计干扰噪声的*二来源;污水管道流量计供电电源的电压和频率波动等电源干扰噪声是污水管道流量计干扰噪声的*三来源。为满足仪表的EMC要求, 智能污水管道流量计分别采用硬件和软件抗干扰技术 , 以提高污水管道流量计抗干扰能力。
3.1 工频干扰噪声的特点及污水管道流量计抗干扰技术
工频干扰噪声*先是由污水管道流量计励磁绕组和流体、电*、放大器输入回路的电磁耦合形成, 其二是污水管道流量计工作现场的工频共模干扰, 其三是供电电源引入的工频串模干扰等, 其产生的物理机理均是电磁感应原理。
污水管道流量计励磁绕组和流体、电*、放大器输入回路的电磁耦合产生的工频干扰对污水管道流量计工作影响*大, 而且在不同的励磁技术下其表现的形态、特性不同, 因而采取抗干扰措施也不同。在工频正弦波励磁磁场下, 此种电磁耦合工频干扰噪声表现形式为正交干扰, 又称为变压器电势, 特点是干扰噪声幅值和工频正弦波励磁频率成正比, 相位滞后流量信号电势90°, 且幅值较流量信号电势大几个数量级。直流励磁、低频矩形波励磁及双频矩形波励磁技术, 可以基本消除正交干扰的影响。工频共模干扰和工频串模干扰这两种常见的干扰, 主要是由于电磁屏蔽缺陷, 分布电容耦合, 污水管道流量计接地不良等原因而产生, 污水管道流量计采用输入保护技术、高输入阻抗、高共模抑制比自举前置放大器技术以及重复接地技术等提高抗工频干扰的能力。ADMAGAE系列污水管道流量计配有接地环, 其作用是通过与液体接触, 建立液体接地, 确保基准电位与被测液体相同, 并且保护流量计内衬。
3.2 电化学干扰噪声的特点及污水管道流量计抗干扰技术
3.2.1 电化学干扰噪声的特点
(1)电化学*化电势干扰是由于电*感生电动势在两**性不同而导致电解质在电*表面*化产生。虽然采用正负交变励磁磁场能显著减弱*化电势的数量级, 但不能从根本上完全消除*化电势干扰。
(2)泥浆干扰是在测量液固两相导电性流体流量时, 固体颗粒或者气泡擦过电*表面时, 电*表面的接触电化学电势突然变化, 电磁流量传感器输出信号出现尖峰脉冲状干扰噪声。
(3)流体流动噪声是在测量低导率液体(100μS/cm以下)流量时, 电*的电化学电势定期波动,产生随流量增加而频率增加的随机干扰噪声, 具有类似泥浆干扰的1 /f频谱特性。
3.2.2 污水管道流量计抗电化学干扰技术
污水管道流量计在提高抗电化学干扰能力方面采取的措施主要是低频矩形波励磁和双频励磁技术。低频矩形波励磁既具有直流励磁技术不产生涡流效应、变压器效应(正交干扰)的特点, 又具有工频正弦波励磁基本不产生*化效应, 便于放大信号处理,而能避免直流放大器零点漂移、噪声、稳定性等问题的产生, 有较好的抗干扰性能。
低频矩形波励磁虽然具有优良的零点稳定性,但在测量泥浆、纸浆等含纤维和固体颗粒的液固两相导电性流体流量时无法克服泥浆干扰和流体噪声干扰。研究分析表明, 泥浆干扰和流动噪声具有1 /f的频谱特征。低频时幅值大, 高频时幅值小, 如果采用较高频率的低频矩形波励磁则能大大降低泥浆干扰的数量级。因此提高励磁频率有助于降低泥浆干扰和流动噪声, 提高传感器输出信号的信噪比。
综上所述, 要保证污水管道流量计的零点稳定性, *好采用低频矩形波励磁;为了能较准确地测量液固两相导电性流体和低导电率流体的流量, 又必须采用较高频率的矩形波励磁。采用图1所示的双频矩形波励磁的方法是*佳方案。
3.2.3 双频矩形波励磁工作及抗干扰原理
在污水管道流量计测量管内形成含有两个频率分量的电磁场:高频励磁分量不受液体干扰的影响, 而低频励磁分量则有着*好的零点稳定性, 根据高、低频定时检测到的各分量信号经过计算, 便可得到流量信号。
双频矩形波励磁测量原理如图1所示,
一个由高低频分量迭加而成的电磁场通过励磁线圈被施加到被测液体中, 励磁波形是在一个低频矩形波上迭加一个高于市电频率的矩形波而得到的波形。在产生的电动势中, 低频分量通过一个大时间常数的积分电路获得一个零点稳定性好的平稳流量信号。而由浆液或低电导率流体产生的低频噪声可被不受噪声影响的高频采样电路所抑制, 有着同样时间常数的流量信号经过一个差分电路以确定流速信号的变化, 把这两种不同频率采样所得的信号结合起来可获得一个稳定流速信号, 该信号不受噪声干扰, 且有较高的零点稳定性。
图1双频矩形波励磁测量原理图
3.3 电源干扰噪声特点及污水管道流量计抗干扰技术
图2基本信号关系
污水管道流量计一般都采用工频交流电源供电, 其电源电压的幅值和频率的变化都会给污水管道流量计带来电源性干扰噪声。对电源电压的幅值变化, 因采用多级集成稳压, 一般而言电源电压的幅值变化对电磁流量的测量精度影响不大。当电源电压的频率波动时, 虽然其波动范围有限, 但对污水管道流量计测量精度影响较大。为了解决工频干扰问题, 实现对流体流速感应电势eab信号的准确测量, 需利用以下基本关系:①励磁周期为工频周期的整数倍, 即励磁频率为50/nHz(n为偶数);②正负励磁下的同相位采样。图2是对应低频矩形波励磁形式下的典型电势信号形式, 按上述关系在一个励磁周期下, 若假设t1 和t2 点为工频干扰的等效干扰点, 且采样宽度T=T1 =T2 , 则eab的基本算式为:
μ0 (t2)=1
2T ∫t1
+T1 t1
e(t1 )dt-∫t2
+T2 t2
e(t2 )dt=eab (4)
式(4)从理论上说明污水管道流量计的工频干扰有可克服的途径, 即同步采样技术, 其方法是以同相位(t1=t2 )、同宽度采样(T1 =T2 =T)为前提的, 采样频率要选为工频周期的整数倍。这样即使混有干扰信号, 因其采样时间为完整的工频周期, 其平均值也为零, 干扰电压不起作用。
4、污水管道流量计选型
4.1 污水管道流量计选型的一般原则
(1)被测介质是否为导电液体或浆液, 由此决定是否选用污水管道流量计;
(2)被测介质的电导率决定污水管道流量计的类型———是高电导率还是低电导率;
(3)工艺要求的*大、*小和常用流量工艺管道的公称通径, 决定介质的流速是否处在较经济的流速点上, 管道是否需要变径, *后确定流量计的口径;
(4)以工艺管道的布置情况, 来确定采用一体型还是分体型流量计, 以及流量计的防护等级等;
(5)根据被测介质是否易结晶、结疤来选择电*型式;
(6)根据被测介质的腐蚀性来选择电*材料;
(7)被测介质的腐蚀性、磨损性及温度来决定采用何种衬里材料;
(8)被测介质的*高工作压力决定流量计的公称压力;
(9)工艺管道的绝缘性决定接地环的型式。
4.2 根据污水管道流量计励磁方式的的特点选型
(1)直流励磁型
这种污水管道流量计数量很少, 只用于测量液态金属流量, 如常温下的汞和高温下的液态钠、钾等。
(2)交流工频励磁型
较早期的污水管道流量计用50 Hz工频市电励磁,由于易受电磁干扰和零点漂移等原因, 现已逐渐被低频矩形励磁所代替。但在测量泥浆、矿浆等液固两相流时, 低频矩形波励磁方式不能克服固体擦过电*表面产生的尖峰噪声, 而工频交流励磁的仪表则不存在这一缺点, 所以国内外尚有一些污水管道流量计仍采用交流工频励磁方式。
(3)低频矩形波励磁型
由于低频矩形波励磁方式功耗小, 零点稳定性好, 所以它是目前污水管道流量计的主要励磁方式。其波形有“正-负”二值和“正-零-负-零”三值两种。有的污水管道流量计励磁频率可以由用户设定, 一般小口径仪表用较高频率, 大口径仪表用较低频率。
(4)双频励磁型励磁电流的波形是在低频矩形波上叠加高频矩形波, 主要为克服二值矩形波励磁存在的浆液噪声和流动噪声, 提高仪表的稳定性和响应特性, 因此广泛用于制浆造纸及污水处理等行业。
5、结束语
通过上面分析可知, 污水管道流量计具有测量精度高、速度快、使用方便, 测量范围广、口径宽等诸多优点, 但同时也存在着测量输出信号易受工频电磁干扰, 流体电化学噪声及电源频率变化影响的缺点。不同励磁方式的污水管道流量计具有不同的抗干扰技术和应用范围。正确了解各种励磁技术的特点和不同污水管道流量计的技术原理是正确使用污水管道流量计的前提。
污水管道计量表安装
在测量管道流量中如何正确选型合适的污水管道流量计
关于无压管道污水流量计制造技术
锚喷竖井在污水管道流量计井中的应用
管道式污水流量计,酸碱污水流量计
关于造成管道式污水流量计误差的主要三类影响因素分析
管道式污水流量计操作说明键盘定义与显示
管道污水流量计,一体污水流量计
污水管道式流量计的零点不稳定检查流程图及应对措施
如何借助污水管道流量计精确测量液体流量
污水管道流量计适用于各种应用的经过验证的解决方案
污水管道流量计的漂移产生的原因及有效去除的三个方法
污水管道流量计在水处理工程中满管状态测量中的产品选型
污水管道流量计在重金属废水自动监测系统中的应用
管道式污水流量计,dn500污水流量计
管道污水流量计,碱性污水流量计
管道式污水流量计,防水型污水流量计价格
隔膜泵上的污水管道流量计提高了流量计量精度
如何选择合适的污水管网流量计和开关提高测量精确性
管道式污水流量计,dn300污水流量计
污水管道流量测量仪器,dn100污水流量计
管道污水流量计,化工污水流量计
管道污水流量计价格
如何有效提高污水管道流量计使用电磁兼容性的研究分析
管道式污水流量计,dn400污水流量计
管道式污水流量计,电磁污水流量计
管道污水流量计
管道式污水流量计
污水管道流量测量仪器
管道式污水流量计,污水流量计厂家
1、污水管道流量计的工作原理
污水管道流量计的工作以电磁感应定律为基础, 即当一个导体在电磁场中运动, 并且运动方向垂直于电磁场时就会产生感应电动势, 所产生的感应电动势的方向垂直于导体运动和电磁场运动的方向, 感应电动势的大小与导体的运动速度和磁场的磁感应强度成正比。当导电流体以平均流速V(m/s)通过一根内径为D(m)的管子时, 若管子内存在一个磁感应强度为B(T)的磁场, 那么就可产生一个垂直于磁场方向和流体流动方向的电动势E:
E = DVB (V) (1)
容积流量Q为:
Q =πD2 V/4 (m3 / s) (2)
将式(2)代入式(1)并处理得:
E=(4B/πD)×Q (V) (3)
如果B和D是常数, 那么从式(3)可看出, E与
Q成正比。电磁流量转换器把电动势E放大并转换成标准的4 ~ 20 mA的信号或脉冲信号, 作为对应的流量信号输出。
2、污水管道流量计的参数设置方法及组态
流量计的参数设置(组态)有两种方法, 一是利用显示面板上的按键, 二是利用手持智能终端。
2.1 使用面板进行参数设定ADMAGAE系列污水管道流量计面板上常用的符号有:
(1)RED(红) 正常工作时不亮, 有报警时闪烁;
(2)定义符 定义符用冒号“:” , 表示所显示的数据正处于待设定状态;
(3)单位显示 显示流量单位;
(4)显示数据 显示流量数据、设定数据和报警的种类;
(5)小数点 表示数据中的小数点;
(6)设定键 这些键用来改变数据显示和设定数据的类型。数据显示类型共有3 种:流量数据显示模式、设定模式、报警显示模式。
2.1.1 流量数据显示模式
流量数据显示模式表示的是瞬时流量值和累积流量值, ADMAGAE可显示12种类型的流量数据。进入流量显示模式用“d1”参数来改变显示项, 详细设定可参考流量计用户手册。
2.1.2 设定模式
设定模式用来检查参数内容和重写数据。只要按下“SET”键, 可将该模式从正常的操作模式中调出。
2.1.3 报警显示模式
当报警发生时, 报警模式就会取代当前模式来显示发生报警的类型, 但是这种情况只是发生在当前流量显示模式或设定模式中参数号被改变时(当正在该部数据项时, 不显示报警)。
2.2 BT智能终端设定
具有智能通信功能的仪表可与智能终端通信。横河的智能终端有BT100、BT200 等型号, 简称BT智能终端, 它们采用BRAIN协议, 将1个±2 mA、2.4 kHz的调制信号迭加到4 ~ 20 mA的模拟信号上用作信号传输。由于调制信号是交流信号, 所以迭加不会影响模拟信号的数值。
BT智能终端与流量计的连接有两种方式:一是直接与流量计端盖下面的BT端子相连, 这种方式适用于现场调试或流量计不具备智能通信功能的情况;二是与4 ~ 20 mA直流信号线连接, BT智能终端可以连接在从控制柜到流量计信号线的任何位置,*大距离可达2 km, 只要保证整个回路的负载电阻在250 ~ 750 Ψ之间, 就可以可靠地通信。这种方式操作者不必去现场, 在控制室就可对流量计进行设置和在线监测, 是使用*多的一种方式。BT智能终端采用菜单式操作, 可以**显示和修改污水管道流量计的各种参数, 其基本的操作有流量计自检、量程调整、显示方式设置、报警设置等。
2.3 污水管道流量计数据设定与组态
污水管道流量计是根据与流体流速相对应的微小电动势计算出体积流量并输出4 ~ 20 mA的信号。为保证获得正确的信号, 必须设定通径、流量量程和仪表系数3个参数, 这3个参数中, 通径和仪表系数早在仪表出厂前就设定好的, 因此用户不能设定这两个参数。用户也可以在仪表出厂前将流量量程设定好, 这种设定只有在用户要求改变量程时才可进行重新设定。
3、电磁兼容性分析
污水管道流量计的工作以电磁感应定律为基础, 产生的正比于被测流量的感应电动势通常很小, *易受到外界电磁干扰, 而它本身产生的电磁干扰很小,因此污水管道流量计的电磁兼容性主要体现在它如何在恶劣的电磁环境下正常工作。在恶劣的电磁环境下, 电磁耦合静电感应是污水管道流量计干扰噪声的主要来源;被测流体介质特性产生的电化学干扰噪声是污水管道流量计干扰噪声的*二来源;污水管道流量计供电电源的电压和频率波动等电源干扰噪声是污水管道流量计干扰噪声的*三来源。为满足仪表的EMC要求, 智能污水管道流量计分别采用硬件和软件抗干扰技术 , 以提高污水管道流量计抗干扰能力。
3.1 工频干扰噪声的特点及污水管道流量计抗干扰技术
工频干扰噪声*先是由污水管道流量计励磁绕组和流体、电*、放大器输入回路的电磁耦合形成, 其二是污水管道流量计工作现场的工频共模干扰, 其三是供电电源引入的工频串模干扰等, 其产生的物理机理均是电磁感应原理。
污水管道流量计励磁绕组和流体、电*、放大器输入回路的电磁耦合产生的工频干扰对污水管道流量计工作影响*大, 而且在不同的励磁技术下其表现的形态、特性不同, 因而采取抗干扰措施也不同。在工频正弦波励磁磁场下, 此种电磁耦合工频干扰噪声表现形式为正交干扰, 又称为变压器电势, 特点是干扰噪声幅值和工频正弦波励磁频率成正比, 相位滞后流量信号电势90°, 且幅值较流量信号电势大几个数量级。直流励磁、低频矩形波励磁及双频矩形波励磁技术, 可以基本消除正交干扰的影响。工频共模干扰和工频串模干扰这两种常见的干扰, 主要是由于电磁屏蔽缺陷, 分布电容耦合, 污水管道流量计接地不良等原因而产生, 污水管道流量计采用输入保护技术、高输入阻抗、高共模抑制比自举前置放大器技术以及重复接地技术等提高抗工频干扰的能力。ADMAGAE系列污水管道流量计配有接地环, 其作用是通过与液体接触, 建立液体接地, 确保基准电位与被测液体相同, 并且保护流量计内衬。
3.2 电化学干扰噪声的特点及污水管道流量计抗干扰技术
3.2.1 电化学干扰噪声的特点
(1)电化学*化电势干扰是由于电*感生电动势在两**性不同而导致电解质在电*表面*化产生。虽然采用正负交变励磁磁场能显著减弱*化电势的数量级, 但不能从根本上完全消除*化电势干扰。
(2)泥浆干扰是在测量液固两相导电性流体流量时, 固体颗粒或者气泡擦过电*表面时, 电*表面的接触电化学电势突然变化, 电磁流量传感器输出信号出现尖峰脉冲状干扰噪声。
(3)流体流动噪声是在测量低导率液体(100μS/cm以下)流量时, 电*的电化学电势定期波动,产生随流量增加而频率增加的随机干扰噪声, 具有类似泥浆干扰的1 /f频谱特性。
3.2.2 污水管道流量计抗电化学干扰技术
污水管道流量计在提高抗电化学干扰能力方面采取的措施主要是低频矩形波励磁和双频励磁技术。低频矩形波励磁既具有直流励磁技术不产生涡流效应、变压器效应(正交干扰)的特点, 又具有工频正弦波励磁基本不产生*化效应, 便于放大信号处理,而能避免直流放大器零点漂移、噪声、稳定性等问题的产生, 有较好的抗干扰性能。
低频矩形波励磁虽然具有优良的零点稳定性,但在测量泥浆、纸浆等含纤维和固体颗粒的液固两相导电性流体流量时无法克服泥浆干扰和流体噪声干扰。研究分析表明, 泥浆干扰和流动噪声具有1 /f的频谱特征。低频时幅值大, 高频时幅值小, 如果采用较高频率的低频矩形波励磁则能大大降低泥浆干扰的数量级。因此提高励磁频率有助于降低泥浆干扰和流动噪声, 提高传感器输出信号的信噪比。
综上所述, 要保证污水管道流量计的零点稳定性, *好采用低频矩形波励磁;为了能较准确地测量液固两相导电性流体和低导电率流体的流量, 又必须采用较高频率的矩形波励磁。采用图1所示的双频矩形波励磁的方法是*佳方案。
3.2.3 双频矩形波励磁工作及抗干扰原理
在污水管道流量计测量管内形成含有两个频率分量的电磁场:高频励磁分量不受液体干扰的影响, 而低频励磁分量则有着*好的零点稳定性, 根据高、低频定时检测到的各分量信号经过计算, 便可得到流量信号。
双频矩形波励磁测量原理如图1所示,
一个由高低频分量迭加而成的电磁场通过励磁线圈被施加到被测液体中, 励磁波形是在一个低频矩形波上迭加一个高于市电频率的矩形波而得到的波形。在产生的电动势中, 低频分量通过一个大时间常数的积分电路获得一个零点稳定性好的平稳流量信号。而由浆液或低电导率流体产生的低频噪声可被不受噪声影响的高频采样电路所抑制, 有着同样时间常数的流量信号经过一个差分电路以确定流速信号的变化, 把这两种不同频率采样所得的信号结合起来可获得一个稳定流速信号, 该信号不受噪声干扰, 且有较高的零点稳定性。
图1双频矩形波励磁测量原理图
3.3 电源干扰噪声特点及污水管道流量计抗干扰技术
图2基本信号关系
污水管道流量计一般都采用工频交流电源供电, 其电源电压的幅值和频率的变化都会给污水管道流量计带来电源性干扰噪声。对电源电压的幅值变化, 因采用多级集成稳压, 一般而言电源电压的幅值变化对电磁流量的测量精度影响不大。当电源电压的频率波动时, 虽然其波动范围有限, 但对污水管道流量计测量精度影响较大。为了解决工频干扰问题, 实现对流体流速感应电势eab信号的准确测量, 需利用以下基本关系:①励磁周期为工频周期的整数倍, 即励磁频率为50/nHz(n为偶数);②正负励磁下的同相位采样。图2是对应低频矩形波励磁形式下的典型电势信号形式, 按上述关系在一个励磁周期下, 若假设t1 和t2 点为工频干扰的等效干扰点, 且采样宽度T=T1 =T2 , 则eab的基本算式为:
μ0 (t2)=1
2T ∫t1
+T1 t1
e(t1 )dt-∫t2
+T2 t2
e(t2 )dt=eab (4)
式(4)从理论上说明污水管道流量计的工频干扰有可克服的途径, 即同步采样技术, 其方法是以同相位(t1=t2 )、同宽度采样(T1 =T2 =T)为前提的, 采样频率要选为工频周期的整数倍。这样即使混有干扰信号, 因其采样时间为完整的工频周期, 其平均值也为零, 干扰电压不起作用。
4、污水管道流量计选型
4.1 污水管道流量计选型的一般原则
(1)被测介质是否为导电液体或浆液, 由此决定是否选用污水管道流量计;
(2)被测介质的电导率决定污水管道流量计的类型———是高电导率还是低电导率;
(3)工艺要求的*大、*小和常用流量工艺管道的公称通径, 决定介质的流速是否处在较经济的流速点上, 管道是否需要变径, *后确定流量计的口径;
(4)以工艺管道的布置情况, 来确定采用一体型还是分体型流量计, 以及流量计的防护等级等;
(5)根据被测介质是否易结晶、结疤来选择电*型式;
(6)根据被测介质的腐蚀性来选择电*材料;
(7)被测介质的腐蚀性、磨损性及温度来决定采用何种衬里材料;
(8)被测介质的*高工作压力决定流量计的公称压力;
(9)工艺管道的绝缘性决定接地环的型式。
4.2 根据污水管道流量计励磁方式的的特点选型
(1)直流励磁型
这种污水管道流量计数量很少, 只用于测量液态金属流量, 如常温下的汞和高温下的液态钠、钾等。
(2)交流工频励磁型
较早期的污水管道流量计用50 Hz工频市电励磁,由于易受电磁干扰和零点漂移等原因, 现已逐渐被低频矩形励磁所代替。但在测量泥浆、矿浆等液固两相流时, 低频矩形波励磁方式不能克服固体擦过电*表面产生的尖峰噪声, 而工频交流励磁的仪表则不存在这一缺点, 所以国内外尚有一些污水管道流量计仍采用交流工频励磁方式。
(3)低频矩形波励磁型
由于低频矩形波励磁方式功耗小, 零点稳定性好, 所以它是目前污水管道流量计的主要励磁方式。其波形有“正-负”二值和“正-零-负-零”三值两种。有的污水管道流量计励磁频率可以由用户设定, 一般小口径仪表用较高频率, 大口径仪表用较低频率。
(4)双频励磁型励磁电流的波形是在低频矩形波上叠加高频矩形波, 主要为克服二值矩形波励磁存在的浆液噪声和流动噪声, 提高仪表的稳定性和响应特性, 因此广泛用于制浆造纸及污水处理等行业。
5、结束语
通过上面分析可知, 污水管道流量计具有测量精度高、速度快、使用方便, 测量范围广、口径宽等诸多优点, 但同时也存在着测量输出信号易受工频电磁干扰, 流体电化学噪声及电源频率变化影响的缺点。不同励磁方式的污水管道流量计具有不同的抗干扰技术和应用范围。正确了解各种励磁技术的特点和不同污水管道流量计的技术原理是正确使用污水管道流量计的前提。
上一篇:酒精流量计价格